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Learning objectives

By the end of this class, you will be able to...
= Identify what characteristics of cement are important
= Select the correct analytical method(s) to measure a specific cement characteristic

= Recognize the limits of the available analytical methods
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Why characterizing cementitious systems?

Characterization of anhydrous and hydrated systems is related to:

Reactivity of anhydrous cement and SCMs
Rheology

Water demand

Mechanical strength

Prediction and understanding of durability issues
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Calorimetry
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Calorimetry

Heat Flow (mW / g solids)
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Calorimetry

» |tis the study of heat transfer during physical and chemical processes

» |tis used to study the kinetics and the extent of the cement hydration by following the heat or
the temperature increase

= Types of calorimeters: Adiabatic c.

Semi-adiabatic c.

Isothermal c.

Bl

= tainstruments.com calmetrix.com controls-group.com
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Calorimetry

» Isothermal and semi-adiabatic are the most used calorimetric methods to study cement hydration

» They quantify the hydration kinetics in different ways

Isothermal c. Semi-adiabatic c.
T

& || '
b

S
t t
Sample: 1-100 g Sample: 0.5-1 kg to 10 kg
Pastes, mortars, concrete (small aggregates) Mortars, concrete (up to 16 mm aggregates)

Wadso et al, 2016
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Calorimetry
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Calorimetry — Examples

Heat Flow (mW / g Clinker)

Sulphate optimization
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Zunino & Scrivener, 2019

Heat evolved (J/g)
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R3 test

250+

0 = : C==

—0—95%
—>—79.4%
—+—66.2%
—0—50.8%
—v—38.9%
——35.0%
—0—17.0%
—— 0%

0 20 40 60 80 100 120 140 160

Time (hours)

Avet et al, 2016




=PrL

Calorimetry — Summary

10

ADVANTAGES
= Quantitative study of hydration kinetics
= Hydration can be followed continuously
= Hydration does not need to be stopped
= Easy to test at different T
= Effect of SCMs, admixtures, correct
sulphation, prediction of compressive
strength

= All systems (pastes, mortars, concrete)

=  Widely available

CAUTIONS
Overall rate of reaction

Reference samples are necessary for
isothermal calorimetry

Calibration

Low signal at later ages
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Chemical and Mineralogical characterization

= X-ray fluorescence (XRF)

= X-ray diffraction (XRD)

= Thermogravimetric analysis (TGA)

= Nuclear magnetic resonance (NMR) spectroscopy

= Fourier-transform infrared spectroscopy (FTIR)

11
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X-ray fluorescence (XRF)

» |t provides the elemental composition of anhydrous cement, SCMs and raw materials

= Performed on pellets or fused powders

= Widely used in the cement industry for quality control

Ejected K-shell electron Incident radiation

M-shell electron
fills vacancy

L-shell electron
fills vacancy

K, x-ray emitted (

K. x-ray emitted

Shells 2
(orbits) 9

bruker.com

= Primary X-ray radiation interacts with the
atoms in the samples, displacing electrons
from the inner shell -> formation of vacancies
(atom is unstable)

= Electrons from higher orbits fill the vacancies
» A characteristic X-ray radiation is emitted (X-

ray fluorescence). It has a specific energy that
depends on the element

l

Composition and concentration of the element

12
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X-ray fluorescence (XRF)

K‘;/W) CEM1425R  Limestone (Scla!;iﬂzglfr:?é)
ca0 63.6 55.0 1.3
sio, 19.3 0.1 44.9
AlLO, 5.7 - 32.3
Fe,O, 36 - 15.4
MgO 0.2 0.2 0.8
SO, 3.2 - 0.1
Na,O 0.2 0.1 0.4
K,O 1.2 - 0.2
TiO, 0.3 - 2.4
P,0% 0.2 - 0.4
MnO 0.1 - 0.1
L.O.I. 0.8 42.6 1.7

Avet et al, 2016
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X-ray diffraction (XRD)

» |tis used to determine the mineralogical composition of anhydrous and hydrated cements

=  When primary X-rays from an X-ray tube strike a sample, they are scattered by the sample

Sample

= |t provides information on the crystal structure X-ray tube

K-ray : Xeray
SOUrce — L detector

— 26

1
1
]
I
I
i

Optics Goniometer Detector
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X-ray diffraction (XRD)
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Courtesy of Dr. Londono-Zuluaga
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XRD -

Diffractogram

16
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XRD - Bragg’s law and structure factor

Bragg’s law Structure factor
Determines the position of the peaks Determines the height of the peaks

Fy = Z Njfjexp[Zin(hxj + ky; + lzj)]exp(—Bj)
J

X;, ¥}, Z; = coordinates of the j atom in the unit cell
N; = fractional occupancy for the j atomic site

f; = atomic X-ray scattering factor

B, = temperature factor

2dsin0 = ni

d = spacing between diffracting planes
6 = incident angle

n = an integer

A = wavelength of the beam

17
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XRD — Examples

Supplementary cementitious
materials (SCMs)

Anhydrous cements

CSA

-+C,AF

CAC

WPC

20 (CuKa) °28 (CuKa)

Snellings, 2016
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XRD — Examples

Hydrated cement pastes C-S-H
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XRD — Phase quantification

The Rietveld method

It minimizes the differences between measured and calculated patterns at each data point i in the
diffraction pattern using a least-squares approach

Sy = Z w;(yi(obs) — y;(calc))?

i(calc) ZS Z Lprmy, |ij| G;(20; — 20y, ;)A; Py j + Bkg,
g=1

Se (ZMV),
Z?:l Sj (ZMV)j

W, =
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XRD — Phase guantification

Quantification of non-diffracting materials

= Internal standard )
Addition of a crystalline material (of known crystallinity) in a known
weight fraction
g - Total amorphous
= External standard content
Comparison of the phase scale factors of a sample to the one of a

standard material measured separately under identical conditions

Partial Or No Known Crystal Structure (PONKCS) method _Dlstlnctlon of the
: . o ‘ ; different amorphous
Calibration of the individual amorphous phases as a ‘standard phase humps
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XRD — Sample preparation for hydrated cements
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XRD - Summary

23

ADVANTAGES

= Quantitative analysis

* In-situ measurements are possible
= Simple and fast sample preparation
» Measurement time < 30 min

» Widely available

DISADVANTAGES

High errors in the quantification of small
guantities

Amorphous phases not distinguished (but
option of using PONKCS)

Ettringite becomes X-ray amorphous on
drying

AFm phases are generally poorly crystalline

Issue of preferred orientation
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Thermogravimetric analysis (TGA)

» TGAIs used to follow the hydration of cement or to evaluate the reactivity of SCMs

» Thermal reactions are generally associated with weight changes or release of heat: dehydration,
dehydroxylation, decarbonation, oxidation, decomposition, phase transition, melting

= Temperature when these reactions occur are typical for each phase

= The sample is heated and the weight loss is measured

= Measurements of bound water, portlandite and calcium carbonate content
= |tis able to identify X-ray amorphous phases

= Gas analysis (mass spectrometer)

= Complementary to other techniques (XRD, SEM, NMR)

tainstruments.com
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Thermogravimetric analysis (TGA) - Examples

Hydrated cement (95% wt. PC + 4% wt. limestone)

100 7 —_— — Unhydrated
95 1 1 hour —
&
§ 90 — 1day ;\5
_§; 85 - — - 28 days =
= 80 400 days —gﬁ
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& 651 ) -0.05 =
= L=
= 60 - Ettringite Monocarbonate o
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551 A
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50 T 0.15
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=

- Lothenbach et al, 2008
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100+

Thermogravimetric analysis (TGA) - Examples

Muscovite
lllite
Kaolinite

Montmorillonite

Secondary phases

)
200

T 3
400 600
Temperature: °C

T
800

1
1000

Mass: %

100+

984
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941

921

90
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861

Calcination efficiency

200 400 600
Temperature: °C

Scrivener et al, 2019
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TGA — Summary

ADVANTAGES

= Good technique to quantify portlandite
= Quantification of bound water

» |dentification of amorphous phases

=  Simple

» Measurement time of a few hours

= Widely available

CAUTIONS

Exact positions are instrument dependent

Effect of sample weight, type of vessel and
gas used

Risk of carbonation (ground sample)
Hydration has to be stopped

= (C-S-H, AFt and AFm lose water below
100°C

27
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Microstructure

= Optical microscopy

= Electron microscopy
= Scanning electron microscopy (SEM)
» Transmission electron microscopy (TEM)



=PrL

Electron microscopy

Interactions of electrons with matter

SEM TEM
Incoming electron beam X Incoming electron beam
(1-15 kV) “rays, (80—200 kV)
electrons ~.
Sample surface T Y
e M
Secondary electrons
Interaction volume Backscattered electrons
(1-3 pm)
Continuum X-rays Characteristic X-rays Transmitted beam
Fluorescent X-rays
Y

Electrons simulated using CASINO®

Scrivener et al, 2016
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Scanning electron microscopy (SEM)

Secondary electrons (SE)

=  From inelastic collisions

= Lower energy than the incident beam: near
surface of the sample

= Highest resolution

* Intensity of SEs and brightness are
determined by the inclination of the surface
to the incident beam (edges, points)

»= Image of the surface topography

=  Qualitative

Backscattered electrons (BSE)

From elastic collisions

Similar energy to that of the incident beam:
higher depth in the sample

Lower resolution than SE images
Intensity of BSEs and brightness are
primarily a function of the atomic number of

the atoms in the sample

Good compositional contrast, avoid surface
roughness

Quantitative
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Scanning electron microscopy (SEM)

Mota et al, 2015 Das et al, 2022 Rossen & Scrivener, 2017
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Scanning electron microscopy (SEM)

Sample preparation

m“ﬁ\?\e’
s

1. Hydration stoppage
- 1: Height of the resin

2. Impregnation

3. Pre-polishing

4. Polishing with spray of diamond
powders

5. Coating

Scrivener et al, 2016
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Scanning electron microscopy (SEM)

Sample preparation

Scrivener et al, 2016

Courtesy of M. Kiliswa (University of Cape Town)

33
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Scanning electron microscopy (SEM)

Hydrated OPC blended with slag or fly ash

© T 4 :
; 4 ' B A O f ey
. y & pol - : é 4 . ‘.q ¥ e
1 : (™ N L 8
p % \l\q ] "
: :
-

Scrivener et al, 2016
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Scanning electron microscopy (SEM)

CAC + gypsum hydrated for 14 d CSA + gypsum hydrated for 14 d
. X / - ’ & . “ : "'. ’ ’ ] 3 ~5"";l"’$§""‘!’,‘{

Courtesy of Dr. Bizzozero (EPFL)
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Scanning electron microscopy (SEM)

Alkali-silica reaction (ASR)

~30 pm ..~

amorphous
ASR product

<cryst'alline
ZASR:E
product

.

 Aggregate

det HV | mag WD curr spot
BSED | 12.0kV [400 x| 6.0 mm |1.2nA| 4.5

Boehm-Courjault et al, 2020 Leemann et al, 2020
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Scanning electron microscopy (SEM)

Chemical analysis

0.5 L
- AFm
= O, Na, Mg, Al Si, P, S, Cl, K, Ca, Ti, Fe oad N
. . . . AFt \'\\ s o
= Energy-Dispersive Spectrometry (EDS) point o3 {™~_ = s
analysis g R 1Y
0.2 1 N, °
\,\ oO
. . .. o Intermixed C-A-S-H 05 . |
» Limiting factors: intermixing of phases -> 011 e S /ARt
L o w 3
avold interfaces I, B, oo S S (N
00 01 02 03 04 05 08 07 9: OF) b
= Not enough for small particles (MK, SF @ sirca s
diameter is less than 1 um) s e
=
1 1 il /e 00@’(96 i
= Atomic ratios plotted on 2D-3D scatter plots '@0 °
{ #57 ©CASHICH_ _____ HelMe
0'00.0* """" 0.1 0.2 0.3 04

(b) AllCa

| ]
Rossen & Scrivener, 2017
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Scanning electron microscopy (SEM)

Elemental maps coupled with BSE images

Al

0 100 200
a (um) a (um)

o

100 200

Georget et al, 2021
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Scanning electron microscopy (SEM)

Elemental maps coupled with BSE images

60 8o 100
1 l

Unreacted volume fraction [%)
40
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2 W AlSlicate

3 Ca-Sibcate
4 W Sihcate

Al
Durdzinski et al, 2015

Hydration time [d]

| ERR TR |
28 56 90
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SEM - Summary

ADVANTAGES

» |dentification of phases
= Morphology

= Quantification
= Pastes, mortars and concrete
= Porosity
» Reactivity of SCMs

= Distribution of phases, morphological
analysis

CAUTIONS

Long and not easy sample preparation
Hydration needs to be stopped
Interaction volume

High number of images to have statistically
representative results

40
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Physical characterization

1. Laser diffraction
= Particle size distribution (PSD)

2. Blaine air permeability and N, adsorption
= Specific surface area (SSA)

3. Mercury Intrusion Porosimetry (MIP)
= Porosity

41

Reactivity of cements
Rheology
Interactions with admixtures
Mechanical strength
Durability
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PSD — Laser diffraction

» PSD and SSA give information about the fineness of a powder » Rapid (< 1 min)
= Particle diameter is method dependent = Best for particles 4 um < x < 3000
» Equivalent spherical diameter (ESD) is reported pum (good down to 0.5 pum)
= Laser diffraction is the most used technique for measuring the PSD
of cement

dFm

dFmin desp

. 1 - & g
Bowen, 2002 Palacios et al, 2016
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PSD — Laser diffraction

Differential (%)

— OPC

— Clay (Cy)

——— Metakaolin (MK)

——— Limestone (LS)

—— Quartz (Qz) OPC LS Qz Cy MK
Dygo(Um) 4142 193 11.96 56.22 20.17
Dyso(Mm) 1422 7.71 456 7.72 5.3
Dyo(um)  1.67 227 036 017 054

0.1 1 10 100
Particle size (um)

Zunino & Scrivener, 2021
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PSD — Laser diffraction

Isothermal calorimetry of alite pastes with different PSD

5 g0 ——PSD1-82um
= PSD2-38um
55 4 PSD3-18um
5 504 ——PSD5-13um
—— PSD1-82um 45 ] ===pure C,S-6um

40 4 /

—— PSD2-38um
44 PSD3-18um
PSD5-13um

354 /

pure C_S-6um

Heat Evolution (m\W/g)
()
1
‘\‘—‘-

Degree of Hydration,%

(calculated by Isothermal Calorimetry)

Time (hours) Time, hours

= Costoya, EPFL 2008
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Specific surface area (SSA)

Blaine air permeability

= Common in the cement industry

= No sample preparation

= Based on empirical calibration

= Assume mono-sized and spherical shape of
particles (Kozeny-Carman theory)

= Poor reproducibility

= Not good for calcined clays

www.matest.com

Gas adsorption — SSAgeT

Sample preparation required

Gas access pores and cracks of the surface
Does not assume particle shape

Suitable for hydrated cements

Www.micromeritics.com
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Porosity

IUPAC* pores classification

= Macropores: d > 50 nm : .
= Mesopores: 2 nm < d < 50 nm } Mercury Intru§|on Porosimetry (MIP)
= Micropores: d< 2 nm N, adsorption

+ Electron microscopy, H NMR relaxometry

Category of pores in hydrated cement materials

» Compacting / air voids: pum — mm, from imperfect placing
= Capillary pores: um to a few nm, space not occupied by hydrates or unreacted cement grains

= Gel pores: nm, intrinsic porosity of C-S-H

® *International Union of Pure & Applied Chemistry

46



47

=PrL

Porosity — MIP

= Pore diameter range of 2 nm — 250 um

= |tis based on the intrusion of a nonwetting fluid (contact angle 6 > 90°, Hg) into porous
structures under increasing applied pressure (P). Hg can intrude only the interconnected

porosity

= P is used to calculate the pore radius (r), assuming cylindrical pores, according to the
Washburn eq.:

_ 2ycost y = 0.485 N/m at 25°C (Hg)
P=- - 0 = 140°
A p=g "p<p Pp=p ¥ p=p

v
. .
s 4
H " " u MAG:5000 x HV:15.0kV WD:12.5 mmé
-

Courtesy of Prof. Flatt (ETHZ) Berodier et al, 2016
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Physical characterization

48

— Summary

ADVANTAGES
LD
= Quick (<5 min) .
=  Widely available "

Blaine air permeability

= Quick and simple

SSA by gas adsorption

= Accurate .
- = Reproducible

CAUTIONS
LD

Assume spherical particle shape

Refractive index (care when the composition
and purity vary)

Use of proper dispersing liquid

Avoid agglomeration

Blaine air permeability

Narrow domain

Poor reproducibility

Not good for SCMs (fly ash, calcined clays)
Assume mono-sized and spherical particles

SSA by gas adsorption

Sample preparation (degassing conditions,
method to stop the hydration, gas selection)
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General remarks

= All analytical techniques have an intrinsic error

» For most quantification methods, the relative error increases with the decrease in the
absolute amounts

= Difficult to detect small quantities
= Calorimetry, XRD and SEM are the most important techniques for characterizing cement

= Bestis to combine several techniques

49
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Learning objectives

Now, at the end of this class, you are able to...
= Identify what characteristics of cement are important
= Select the correct analytical method(s) to measure a specific cement characteristic

= Recognize the limits of the available analytical methods
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Recommended literature

A Practical Guide to
Microstructural Analysis of
Cementitious Materials

Edited by
Karen Scrivener, Ruben Snellings, and Barbara Lothenbach

CRC Press

51
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Course schedule

Week # Class date

Title

Lecturer

1 11/09/2024 Introduction and Literature Review Prof. Karen Scrivener / Dr. Alastair Marsh
2 18/09/2024 Durability Dr. Beatrice Malchiodi
S 25/09/2024 Cement hydration Prof. Karen Scrivener
< 02/10/2024 Characterisation Dr. Federica Boscaro
—> 5 09/10/2024 Presentation 1
6 16/10/2024 Admixtures Dr. Federica Boscaro
7 30/10/2024 Presentation 2
8 06/11/2024 Life cycle analysis for cementitious materials Dr. Alastair Marsh
9 13/11/2024 Limestone calcined clay cements (LC?) Dr. Franco Zunino
10 20/11/2024 Concrete design Dr. Beatrice Malchiodi
1" 27/11/2024 Sustainability appraoches for construction Dr. Alastair Marsh
12 04/12/2024 Concrete structures / Q&A on Presentation 3  Prof. David Ruggiero
13 11/12/2024 Presentation 3
14 18/12/2024 Re-use & standardization Prof. David Fernandez / Prof. Corentin Fivet
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Advanced cementitious
materials, MSE 420

Questions?

Lecture 4: Cement characterisation
and analytical methods

Dr. Federica Boscaro
federica.boscaro@epfl.ch
- 2nd October 2024




