
02.10.2024

Cement 
characterisation 
and analytical 
methods

Advanced cementitious 
materials, MSE 420

Lecture 4 

Dr. Federica Boscaro



2

Learning objectives

By the end of this class, you will be able to...

▪ Identify what characteristics of cement are important

▪ Select the correct analytical method(s) to measure a specific cement characteristic

▪ Recognize the limits of the available analytical methods
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Why characterizing cementitious systems?

Characterization of anhydrous and hydrated systems is related to:

▪ Reactivity of anhydrous cement and SCMs

▪ Rheology

▪ Water demand

▪ Mechanical strength

Prediction and understanding of durability issues



Calorimetry
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Zunino & Scrivener, 2019 



Calorimetry
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Zunino & Scrivener, 2019 



Calorimetry
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▪ It is the study of heat transfer during physical and chemical processes

▪ It is used to study the kinetics and the extent of the cement hydration by following the heat or 

the temperature increase

▪ Types of calorimeters:
Semi-adiabatic c.

Isothermal c.

Adiabatic c.

calmetrix.comtainstruments.com controls-group.com



Calorimetry
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▪ Isothermal and semi-adiabatic are the most used calorimetric methods to study cement hydration

▪ They quantify the hydration kinetics in different ways 

Semi-adiabatic c.Isothermal c.

Wadsö et al, 2016

Sample: 1-100 g

Pastes, mortars, concrete (small aggregates)
Sample: 0.5-1 kg to 10 kg

Mortars, concrete (up to 16 mm aggregates)



Calorimetry

8

Wadsö et al, 2016



Calorimetry – Examples 
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Avet et al, 2016

R3 testSulphate optimization

Zunino & Scrivener, 2019
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▪ Quantitative study of hydration kinetics

▪ Hydration can be followed continuously

▪ Hydration does not need to be stopped

▪ Easy to test at different T

▪ Effect of SCMs, admixtures, correct 

sulphation, prediction of compressive 

strength

▪ All systems (pastes, mortars, concrete)

▪ Widely available

Calorimetry – Summary

▪ Overall rate of reaction

▪ Reference samples are necessary for 

isothermal calorimetry

▪ Calibration

▪ Low signal at later ages

ADVANTAGES CAUTIONS



Chemical and Mineralogical characterization
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▪ X-ray fluorescence (XRF)

▪ X-ray diffraction (XRD)

▪ Thermogravimetric analysis (TGA)

▪ Nuclear magnetic resonance (NMR) spectroscopy

▪ Fourier-transform infrared spectroscopy (FTIR)



X-ray fluorescence (XRF)
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▪ It provides the elemental composition of anhydrous cement, SCMs and raw materials

▪ Performed on pellets or fused powders

▪ Widely used in the cement industry for quality control 

▪ Primary X-ray radiation interacts with the 

atoms in the samples, displacing electrons 

from the inner shell -> formation of vacancies 

(atom is unstable)

▪ Electrons from higher orbits fill the vacancies

▪ A characteristic X-ray radiation is emitted (X-

ray fluorescence). It has a specific energy that 

depends on the element

Composition and concentration of the element

bruker.com



X-ray fluorescence (XRF)
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Avet et al, 2016

% 

(w/w)
CEM I 42.5 R Limestone

Calcined clay 

(51 % kaolinite)

CaO 63.6 55.0 1.3

SiO2 19.3 0.1 44.9

Al2O3 5.7 - 32.3

Fe2O3 3.6 - 15.4

MgO 0.2 0.2 0.8

SO3 3.2 - 0.1

Na2O 0.2 0.1 0.4

K2O 1.2 - 0.2

TiO2 0.3 - 2.4

P2O5 0.2 - 0.4

MnO 0.1 - 0.1

L.O.I. 0.8 42.6 1.7



X-ray diffraction (XRD)
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▪ It is used to determine the mineralogical composition of anhydrous and hydrated cements

▪ When primary X-rays from an X-ray tube strike a sample, they are scattered by the sample

▪ It provides information on the crystal structure X-ray tube

Optics Goniometer Detector

Sample



X-ray diffraction (XRD)
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pubs.usgs.gov

Courtesy of Dr. Londono-Zuluaga



XRD – Diffractogram
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Diagram
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XRD – Bragg’s law and structure factor
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Bragg’s law

𝟐𝒅𝒔𝒊𝒏𝜽 = 𝒏𝝀

d = spacing between diffracting planes

θ = incident angle

n = an integer

λ = wavelength of the beam

Structure factor

Determines the position of the peaks Determines the height of the peaks

𝐹𝐾 =෍

𝑗

𝑁𝑗𝑓𝑗𝑒𝑥𝑝 2𝑖𝜋 ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗 𝑒𝑥𝑝 −𝐵𝑗

xj, yj, zj = coordinates of the j atom in the unit cell

Nj = fractional occupancy for the j atomic site

fj = atomic X-ray scattering factor

Bj = temperature factor



XRD – Examples
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Anhydrous cements
Supplementary cementitious 

materials (SCMs)

Snellings, 2016



XRD – Examples
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Hydrated cement pastes C-S-H

Kocaba, EPFL 2009 Nonat, 2004



XRD – Phase quantification
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The Rietveld method

It minimizes the differences between measured and calculated patterns at each data point i in the 

diffraction pattern using a least-squares approach



XRD – Phase quantification
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Quantification of non-diffracting materials

▪ Internal standard

Addition of a crystalline material (of known crystallinity) in a known 

weight fraction

▪ External standard

Comparison of the phase scale factors of a sample to the one of a 

standard material measured separately under identical conditions

▪ Partial Or No Known Crystal Structure (PONKCS) method

Calibration of the individual amorphous phases as a ‘standard phase’

Total amorphous 

content

Distinction of the 

different amorphous 

humps



XRD – Sample preparation for hydrated cements
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Mantellato et al, 2016
Snellings et al, 2018
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▪ Quantitative analysis

▪ In-situ measurements are possible

▪ Simple and fast sample preparation

▪ Measurement time < 30 min

▪ Widely available

XRD – Summary

▪ High errors in the quantification of small 

quantities

▪ Amorphous phases not distinguished (but 

option of using PONKCS)

▪ Ettringite becomes X-ray amorphous on 

drying

▪ AFm phases are generally poorly crystalline

▪ Issue of preferred orientation

ADVANTAGES DISADVANTAGES



Thermogravimetric analysis (TGA)
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▪ TGA is used to follow the hydration of cement or to evaluate the reactivity of SCMs

▪ Thermal reactions are generally associated with weight changes or release of heat: dehydration, 

dehydroxylation, decarbonation, oxidation, decomposition, phase transition, melting

▪ Temperature when these reactions occur are typical for each phase

▪ The sample is heated and the weight loss is measured

▪ Measurements of bound water, portlandite and calcium carbonate content

▪ It is able to identify X-ray amorphous phases

▪ Gas analysis (mass spectrometer)

▪ Complementary to other techniques (XRD, SEM, NMR)

tainstruments.com



Thermogravimetric analysis (TGA) - Examples
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Hydrated cement (95% wt. PC + 4% wt. limestone)

Lothenbach et al, 2008



Thermogravimetric analysis (TGA) - Examples
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Scrivener et al, 2019

Calcination efficiencySecondary phases
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▪ Good technique to quantify portlandite

▪ Quantification of bound water

▪ Identification of amorphous phases

▪ Simple

▪ Measurement time of a few hours

▪ Widely available

TGA – Summary

▪ Exact positions are instrument dependent

▪ Effect of sample weight, type of vessel and 

gas used

▪ Risk of carbonation (ground sample)

▪ Hydration has to be stopped

▪ C-S-H, AFt and AFm lose water below 

100°C

ADVANTAGES CAUTIONS



Microstructure
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▪ Optical microscopy

▪ Electron microscopy

▪ Scanning electron microscopy (SEM)

▪ Transmission electron microscopy (TEM)



Electron microscopy
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Scrivener et al, 2016

Interactions of electrons with matter



Scanning electron microscopy (SEM)

30

Secondary electrons (SE) Backscattered electrons (BSE)

▪ From inelastic collisions

▪ Lower energy than the incident beam: near 

surface of the sample

▪ Highest resolution

▪ Intensity of SEs and brightness are 

determined by the inclination of the surface 

to the incident beam (edges, points)

▪ Image of the surface topography

▪ Qualitative

▪ From elastic collisions

▪ Similar energy to that of the incident beam: 

higher depth in the sample

▪ Lower resolution than SE images

▪ Intensity of BSEs and brightness are 

primarily a function of the atomic number of 

the atoms in the sample

▪ Good compositional contrast, avoid surface 

roughness

▪ Quantitative



Scanning electron microscopy (SEM)
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Mota et al, 2015 Rossen & Scrivener, 2017Das et al, 2022



Scanning electron microscopy (SEM)
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Sample preparation

1. Hydration stoppage

2. Impregnation

3. Pre-polishing

4. Polishing with spray of diamond 

powders

5. Coating 

Scrivener et al, 2016



Scanning electron microscopy (SEM)
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Sample preparation

Scrivener et al, 2016

Courtesy of M. Kiliswa (University of Cape Town)



Scanning electron microscopy (SEM)
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Hydrated OPC blended with slag or fly ash

Scrivener et al, 2016



Scanning electron microscopy (SEM)
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CAC + gypsum hydrated for 14 d

Courtesy of Dr. Bizzozero (EPFL)

CSA + gypsum hydrated for 14 d



Scanning electron microscopy (SEM)
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Leemann et al, 2020 

Alkali-silica reaction (ASR)

Boehm-Courjault et al, 2020



Scanning electron microscopy (SEM)
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Chemical analysis

▪ O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe

▪ Energy-Dispersive Spectrometry (EDS) point 

analysis

▪ Limiting factors: intermixing of phases -> 

avoid interfaces

▪ Not enough for small particles (MK, SF 

diameter is less than 1 µm)

▪ Atomic ratios plotted on 2D-3D scatter plots

Rossen & Scrivener, 2017



Scanning electron microscopy (SEM)
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Elemental maps coupled with BSE images

Georget et al, 2021



Scanning electron microscopy (SEM)
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Elemental maps coupled with BSE images

Durdziński et al, 2015
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▪ Identification of phases 

▪ Morphology

▪ Quantification 

▪ Pastes, mortars and concrete

▪ Porosity

▪ Reactivity of SCMs

▪ Distribution of phases, morphological 

analysis

SEM – Summary

▪ Long and not easy sample preparation

▪ Hydration needs to be stopped

▪ Interaction volume

▪ High number of images to have statistically 

representative results

ADVANTAGES CAUTIONS



Physical characterization
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1. Laser diffraction

▪ Particle size distribution (PSD)

2. Blaine air permeability and N2 adsorption

▪ Specific surface area (SSA)

3. Mercury Intrusion Porosimetry (MIP)

▪ Porosity

Reactivity of cements

Rheology

Interactions with admixtures

Mechanical strength

Durability



PSD – Laser diffraction
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▪ PSD and SSA give information about the fineness of a powder

▪ Particle diameter is method dependent

▪ Equivalent spherical diameter (ESD) is reported

▪ Laser diffraction is the most used technique for measuring the PSD 

of cement

Palacios et al, 2016Bowen, 2002

dESD

▪ Rapid (< 1 min)

▪ Best for particles 4 µm < x < 3000 

µm (good down to 0.5 µm)



PSD – Laser diffraction
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Zunino & Scrivener, 2021 

OPC LS Qz Cy MK

Dv90 (µm) 41.42 19.3 11.96 56.22 20.17

Dv50 (µm) 14.22 7.71 4.56 7.72 5.13

DV10 (µm) 1.67 2.27 0.36 0.17 0.54



PSD – Laser diffraction
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Costoya, EPFL 2008

Isothermal calorimetry of alite pastes with different PSD



Specific surface area (SSA)
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Blaine air permeability Gas adsorption – SSABET

www.micromeritics.comwww.matest.com

▪ Common in the cement industry

▪ No sample preparation

▪ Based on empirical calibration

▪ Assume mono-sized and spherical shape of 

particles (Kozeny-Carman theory)

▪ Poor reproducibility

▪ Not good for calcined clays

▪ Sample preparation required

▪ Gas access pores and cracks of the surface

▪ Does not assume particle shape

▪ Suitable for hydrated cements

Flatt & Marchon, CMS course (ETHZ) 



Porosity
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IUPAC* pores classification

▪ Macropores: d > 50 nm

▪ Mesopores: 2 nm < d < 50 nm

▪ Micropores: d< 2 nm 

Mercury Intrusion Porosimetry (MIP)

*International Union of Pure & Applied Chemistry

N2 adsorption

Category of pores in hydrated cement materials

▪ Compacting / air voids: µm – mm, from imperfect placing

▪ Capillary pores: µm to a few nm, space not occupied by hydrates or unreacted cement grains

▪ Gel pores: nm, intrinsic porosity of C-S-H

+ Electron microscopy, 1H NMR relaxometry



Porosity – MIP
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▪ Pore diameter range of 2 nm – 250 µm

▪ It is based on the intrusion of a nonwetting fluid (contact angle θ > 90⁰, Hg) into porous 

structures under increasing applied pressure (P). Hg can intrude only the interconnected 

porosity

▪ P is used to calculate the pore radius (r), assuming cylindrical pores, according to the 

Washburn eq.:

𝑃 = −
2𝛾𝑐𝑜𝑠𝜃

𝑟
γ = 0.485 N/m at 25⁰C (Hg)

θ = 140⁰

Courtesy of Prof. Flatt (ETHZ) Berodier et al, 2016
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▪ Quick (< 5 min)

▪ Widely available

▪ Quick and simple

▪ Accurate

▪ Reproducible

Physical characterization – Summary

▪ Assume spherical particle shape

▪ Refractive index (care when the composition 

and purity vary)

▪ Use of proper dispersing liquid

▪ Avoid agglomeration

▪ Narrow domain

▪ Poor reproducibility

▪ Not good for SCMs (fly ash, calcined clays)

▪ Assume mono-sized and spherical particles

▪ Sample preparation (degassing conditions, 

method to stop the hydration, gas selection)

ADVANTAGES CAUTIONS

LD

Blaine air permeability

SSA by gas adsorptionSSA by gas adsorption

LD

Blaine air permeability



General remarks
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▪ All analytical techniques have an intrinsic error

▪ For most quantification methods, the relative error increases with the decrease in the 

absolute amounts

▪ Difficult to detect small quantities

▪ Calorimetry, XRD and SEM are the most important techniques for characterizing cement

▪ Best is to combine several techniques
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Learning objectives

Now, at the end of this class, you are able to...

▪ Identify what characteristics of cement are important

▪ Select the correct analytical method(s) to measure a specific cement characteristic

▪ Recognize the limits of the available analytical methods
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Recommended literature
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Course schedule
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Questions?


