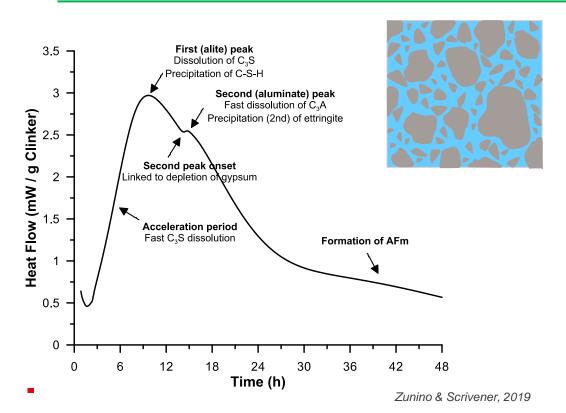
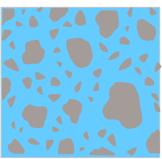

EPFL

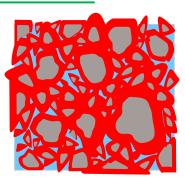
Learning objectives

By the end of this class, you will be able to...

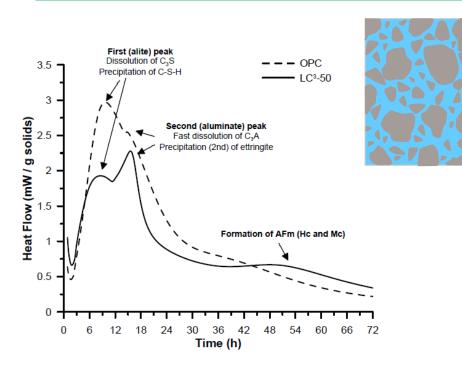
- Identify what characteristics of cement are important
- Select the correct analytical method(s) to measure a specific cement characteristic
- Recognize the limits of the available analytical methods

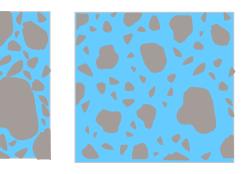

Why characterizing cementitious systems?

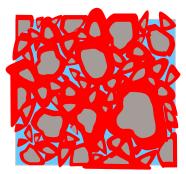

Characterization of anhydrous and hydrated systems is related to:


- Reactivity of anhydrous cement and SCMs
- Rheology
- Water demand
- Mechanical strength

Prediction and understanding of durability issues







- It is the study of heat transfer during physical and chemical processes
- It is used to study the kinetics and the extent of the cement hydration by following the heat or the temperature increase
- Types of calorimeters:

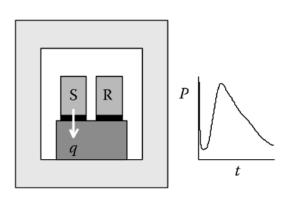
Isothermal c.

tainstruments.com

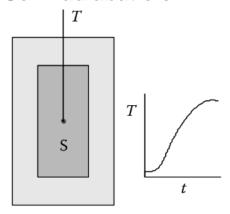
Semi-adiabatic c.

calmetrix.com

Adiabatic c.

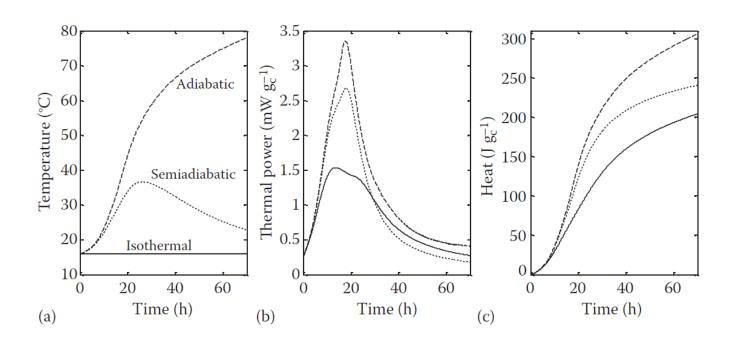


controls-group.com


- Isothermal and semi-adiabatic are the most used calorimetric methods to study cement hydration
- They quantify the hydration kinetics in different ways

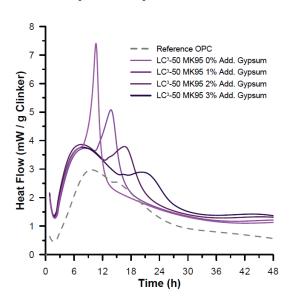
Isothermal c.

Sample: 1-100 g
Pastes, mortars, concrete (small aggregates)

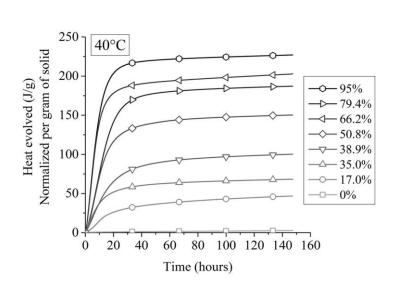

Semi-adiabatic c.

Sample: 0.5-1 kg to 10 kg Mortars, concrete (up to 16 mm aggregates)

Wadsö et al, 2016



Wadsö et al, 2016


Calorimetry – Examples

Sulphate optimization

Zunino & Scrivener, 2019

R³ test

Avet et al, 2016

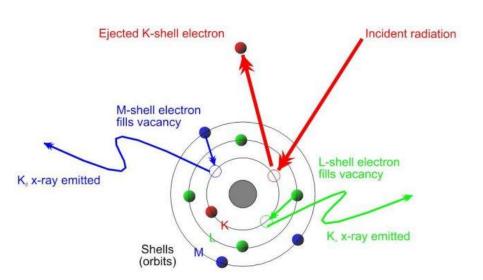
Calorimetry – Summary

ADVANTAGES

- Quantitative study of hydration kinetics
- Hydration can be followed continuously
- Hydration does not need to be stopped
- Easy to test at different T
- Effect of SCMs, admixtures, correct sulphation, prediction of compressive strength
- All systems (pastes, mortars, concrete)
- Widely available

CAUTIONS

- Overall rate of reaction
- Reference samples are necessary for isothermal calorimetry
- Calibration
- Low signal at later ages


Chemical and Mineralogical characterization

- X-ray fluorescence (XRF)
- X-ray diffraction (XRD)
- Thermogravimetric analysis (TGA)
- Nuclear magnetic resonance (NMR) spectroscopy
- Fourier-transform infrared spectroscopy (FTIR)

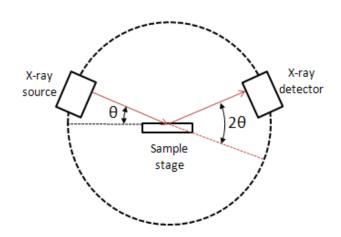
X-ray fluorescence (XRF)

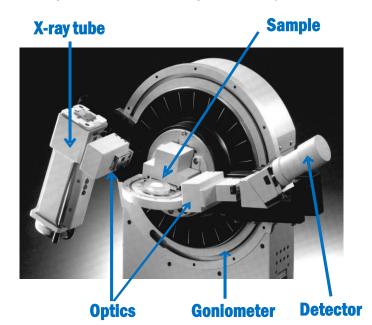
- It provides the elemental composition of anhydrous cement, SCMs and raw materials
- Performed on pellets or fused powders
- Widely used in the cement industry for quality control

- Primary X-ray radiation interacts with the atoms in the samples, displacing electrons from the inner shell -> formation of vacancies (atom is unstable)
- Electrons from higher orbits fill the vacancies
- A characteristic X-ray radiation is emitted (X-ray fluorescence). It has a specific energy that depends on the element

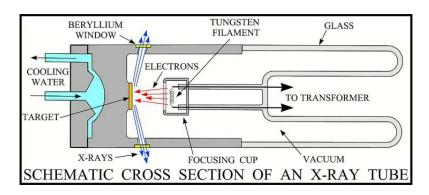
Composition and concentration of the element

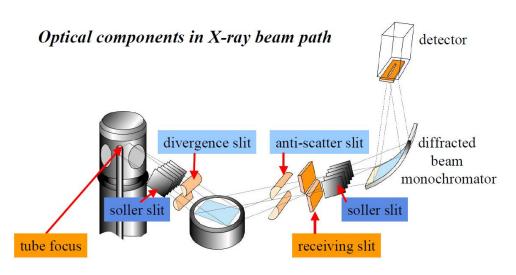
X-ray fluorescence (XRF)


	% (w/w)	CEM I 42.5 R	Limestone	Calcined clay (51 % kaolinite)
(CaO	63.6	55.0	1.3
,	SiO ₂	19.3	0.1	44.9
1	Al_2O_3	5.7	-	32.3
ı	Fe ₂ O ₃	3.6	-	15.4
ı	MgO	0.2	0.2	0.8
,	SO ₃	3.2	-	0.1
ı	Na ₂ O	0.2	0.1	0.4
I	K ₂ O	1.2	-	0.2
-	TiO ₂	0.3	-	2.4
	P ₂ O ₅	0.2	-	0.4
I	MnO	0.1	-	0.1
I	L.O.I.	0.8	42.6	1.7

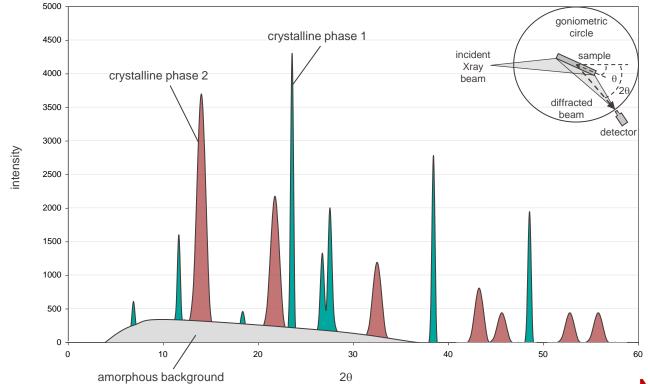

Avet et al, 2016

X-ray diffraction (XRD)


- It is used to determine the mineralogical composition of anhydrous and hydrated cements
- When primary X-rays from an X-ray tube strike a sample, they are scattered by the sample
- It provides information on the crystal structure

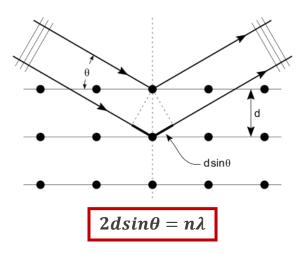


X-ray diffraction (XRD)


pubs.usgs.gov

Courtesy of Dr. Londono-Zuluaga

XRD – Diffractogram



XRD – Bragg's law and structure factor

Bragg's law

Determines the position of the peaks

d = spacing between diffracting planes

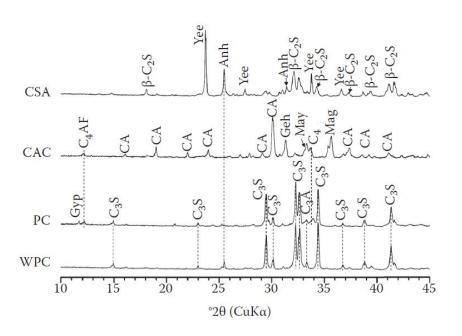
 θ = incident angle

n =an integer

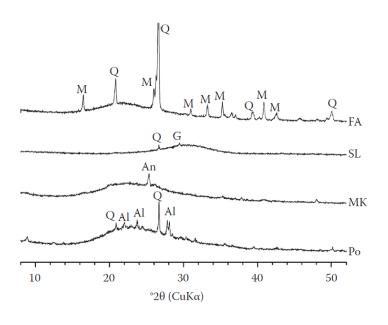
 λ = wavelength of the beam

Structure factor

Determines the height of the peaks

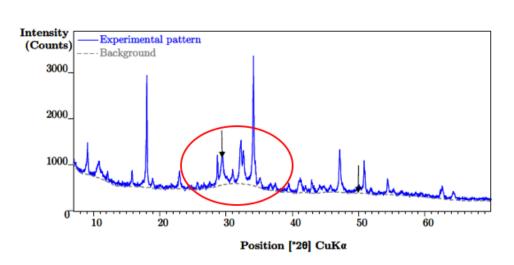

$$F_K = \sum_{j} N_j f_j exp [2i\pi (hx_j + ky_j + lz_j)] exp(-B_j)$$

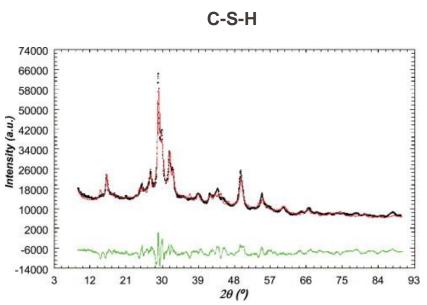
 x_j , y_j , z_j = coordinates of the j atom in the unit cell N_j = fractional occupancy for the j atomic site f_j = atomic X-ray scattering factor B_j = temperature factor



XRD – Examples

Anhydrous cements


Supplementary cementitious materials (SCMs)



XRD – Examples

Hydrated cement pastes

Kocaba, EPFL 2009 Nonat, 2004

XRD – Phase quantification

The Rietveld method

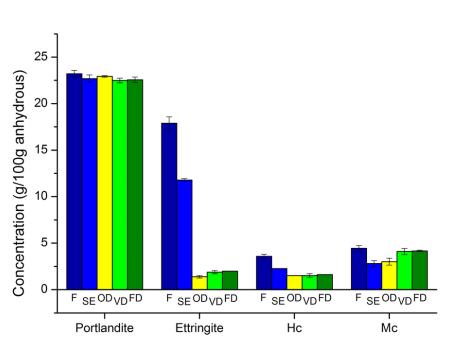
It minimizes the differences between measured and calculated patterns at each data point *i* in the diffraction pattern using a least-squares approach

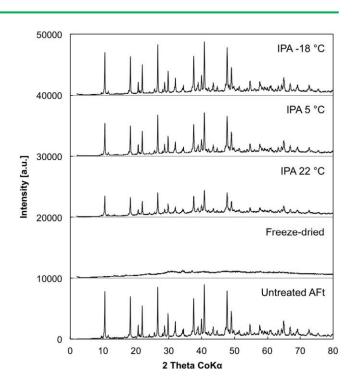
$$S_{y} = \sum_{i} w_{i}(y_{i}(obs) - y_{i}(calc))^{2}$$
$$y_{i}(calc) = \sum_{j=1}^{n} S_{j} \sum_{k=1}^{m} Lp_{k}m_{k} |F_{k,j}|^{2} G_{j}(2\theta_{i} - 2\theta_{k,j})A_{j}P_{k,j} + Bkg_{i}$$

$$W_{\alpha} = \frac{S_{\alpha} (ZMV)_{\alpha}}{\sum_{j=1}^{n} S_{j} (ZMV)_{j}}$$

XRD – Phase quantification

Quantification of non-diffracting materials


- Internal standard
 Addition of a crystalline material (of known crystallinity) in a known weight fraction
- External standard
 Comparison of the phase scale factors of a sample to the one of a standard material measured separately under identical conditions
- Partial Or No Known Crystal Structure (PONKCS) method
 Calibration of the individual amorphous phases as a 'standard phase'


Total amorphous content

Distinction of the different amorphous humps

XRD – Sample preparation for hydrated cements

Snellings et al, 2018

Mantellato et al, 2016

XRD – Summary

ADVANTAGES

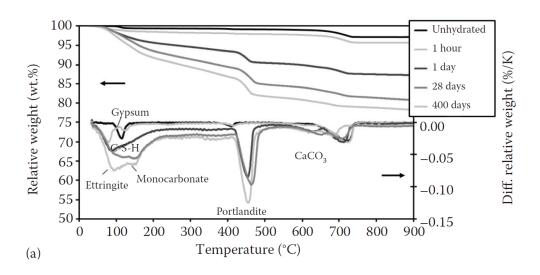
- Quantitative analysis
- In-situ measurements are possible
- Simple and fast sample preparation
- Measurement time < 30 min
- Widely available

DISADVANTAGES

- High errors in the quantification of small quantities
- Amorphous phases not distinguished (but option of using PONKCS)
- Ettringite becomes X-ray amorphous on drying
- AFm phases are generally poorly crystalline
- Issue of preferred orientation

Thermogravimetric analysis (TGA)

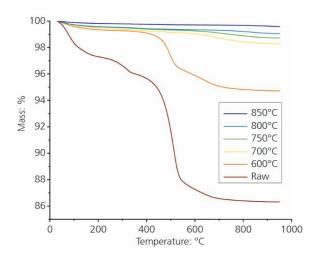
- TGA is used to follow the hydration of cement or to evaluate the reactivity of SCMs
- Thermal reactions are generally associated with weight changes or release of heat: dehydration, dehydroxylation, decarbonation, oxidation, decomposition, phase transition, melting
- Temperature when these reactions occur are typical for each phase
- The sample is heated and the weight loss is measured
- Measurements of bound water, portlandite and calcium carbonate content
- It is able to identify X-ray amorphous phases
- Gas analysis (mass spectrometer)
- Complementary to other techniques (XRD, SEM, NMR)

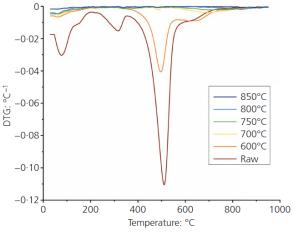


tainstruments.com

Thermogravimetric analysis (TGA) - Examples


Hydrated cement (95% wt. PC + 4% wt. limestone)




Thermogravimetric analysis (TGA) - Examples

Secondary phases

Calcination efficiency

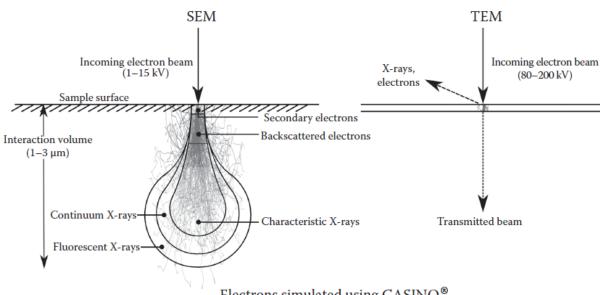
TGA – Summary

ADVANTAGES

- Good technique to quantify portlandite
- Quantification of bound water
- Identification of amorphous phases
- Simple
- Measurement time of a few hours
- Widely available

CAUTIONS

- Exact positions are instrument dependent
- Effect of sample weight, type of vessel and gas used
- Risk of carbonation (ground sample)
- Hydration has to be stopped
 - C-S-H, AFt and AFm lose water below 100°C

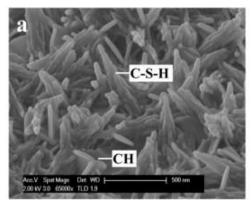

Microstructure

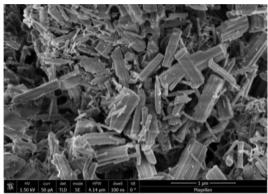
- Optical microscopy
- Electron microscopy
 - Scanning electron microscopy (SEM)
 - Transmission electron microscopy (TEM)

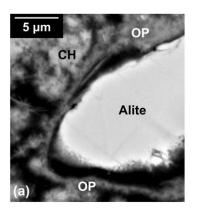
Electron microscopy

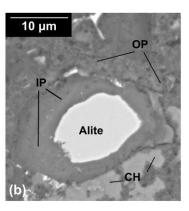
Interactions of electrons with matter

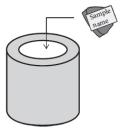
Electrons simulated using CASINO®


Secondary electrons (SE)


- From inelastic collisions
- Lower energy than the incident beam: near surface of the sample
- Highest resolution
- Intensity of SEs and brightness are determined by the inclination of the surface to the incident beam (edges, points)
- Image of the surface topography
- Qualitative


Backscattered electrons (BSE)

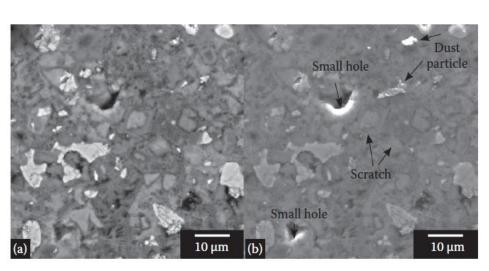

- From elastic collisions
- Similar energy to that of the incident beam: higher depth in the sample
- Lower resolution than SE images
- Intensity of BSEs and brightness are primarily a function of the atomic number of the atoms in the sample
- Good compositional contrast, avoid surface roughness
- Quantitative

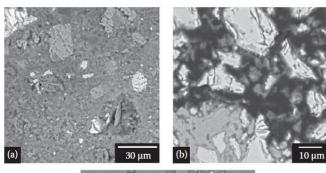


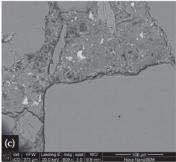
Mota et al, 2015 Das et al, 2022 Rossen & Scrivener, 2017

Sample preparation

- 1. Hydration stoppage
- 2. Impregnation
- 3. Pre-polishing
- 4. Polishing with spray of diamond powders
- 5. Coating

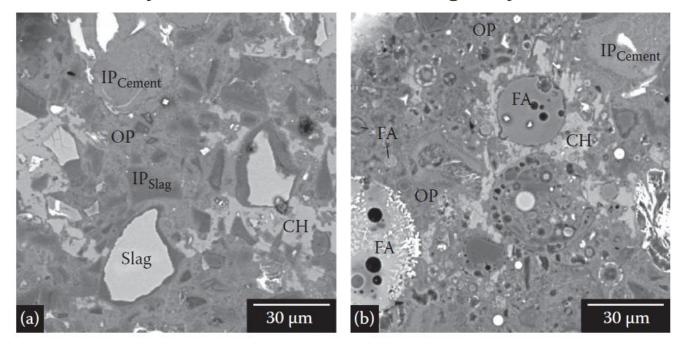




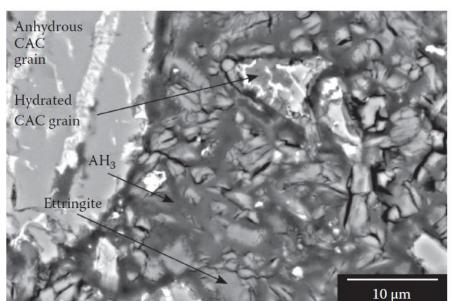


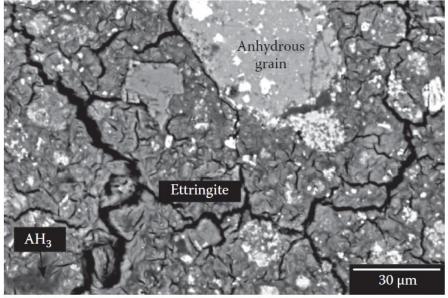
Sample preparation

Scrivener et al, 2016

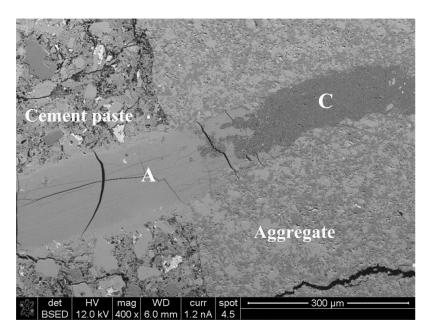


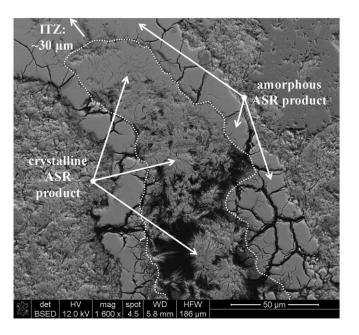
Courtesy of M. Kiliswa (University of Cape Town)


Hydrated OPC blended with slag or fly ash

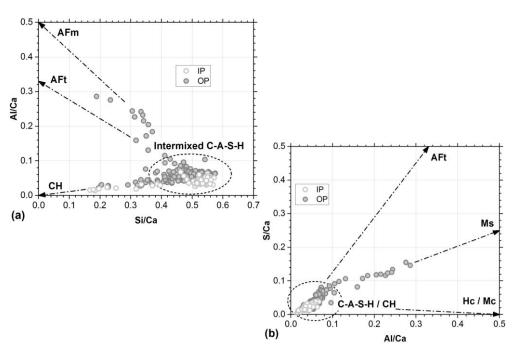

Scrivener et al, 2016

CAC + gypsum hydrated for 14 d




CSA + gypsum hydrated for 14 d

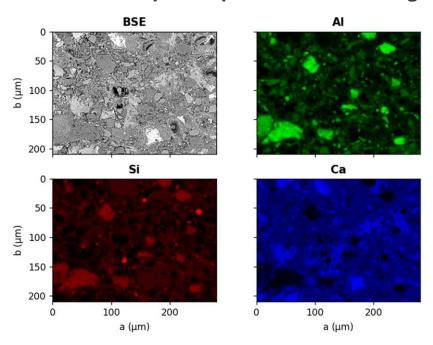
Alkali-silica reaction (ASR)



Scanning electron microscopy (SEM)

Chemical analysis

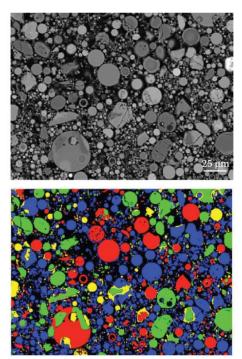
- O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe
- Energy-Dispersive Spectrometry (EDS) point analysis
- Limiting factors: intermixing of phases -> avoid interfaces
- Not enough for small particles (MK, SF diameter is less than 1 µm)
- Atomic ratios plotted on 2D-3D scatter plots

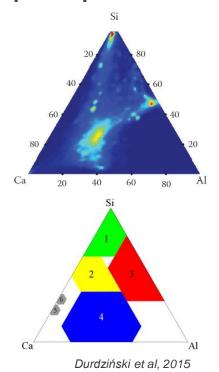


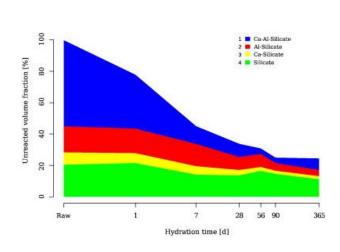
Rossen & Scrivener, 2017

Scanning electron microscopy (SEM)

Elemental maps coupled with BSE images




Georget et al, 2021



Scanning electron microscopy (SEM)

Elemental maps coupled with BSE images

SEM – Summary

ADVANTAGES

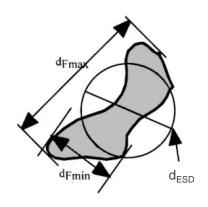
- Identification of phases
- Morphology
- Quantification
 - Pastes, mortars and concrete
 - Porosity
 - Reactivity of SCMs
- Distribution of phases, morphological analysis

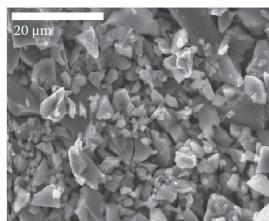
CAUTIONS

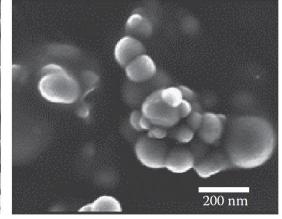
- Long and not easy sample preparation
- Hydration needs to be stopped
- Interaction volume
- High number of images to have statistically representative results

Physical characterization

- 1. Laser diffraction
 - Particle size distribution (PSD)
- 2. Blaine air permeability and N₂ adsorption
 - Specific surface area (SSA)
- 3. Mercury Intrusion Porosimetry (MIP)
 - Porosity

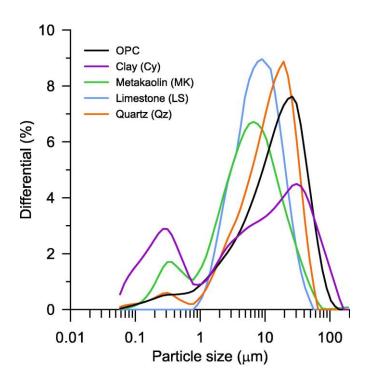

Reactivity of cements
Rheology
Interactions with admixtures
Mechanical strength
Durability




PSD – Laser diffraction

- PSD and SSA give information about the fineness of a powder
- Particle diameter is method dependent
- Equivalent spherical diameter (ESD) is reported
- Laser diffraction is the most used technique for measuring the PSD of cement

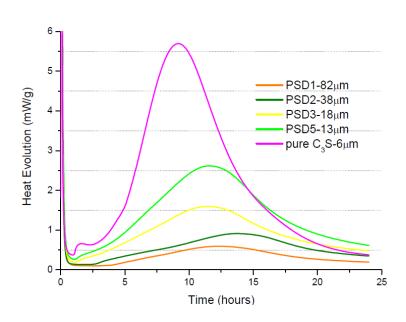
- Rapid (< 1 min)
- Best for particles 4 μm < x < 3000 μm (good down to 0.5 μm)

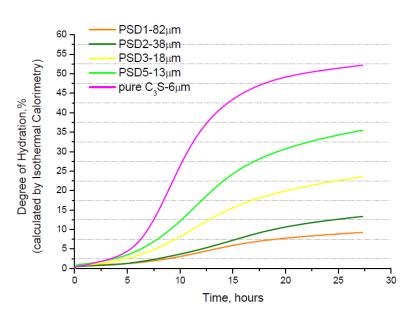


Palacios et al, 2016

Bowen, 2002

PSD – Laser diffraction



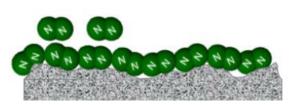

	OPC	LS	Qz	Су	MK
D _{ν90} (μm)	41.42	19.3	11.96	56.22	20.17
D _{ν50} (μm)	14.22	7.71	4.56	7.72	5.13
D _{V10} (μm)	1.67	2.27	0.36	0.17	0.54

PSD – Laser diffraction

Isothermal calorimetry of alite pastes with different PSD

Specific surface area (SSA)

Blaine air permeability


- Common in the cement industry
- No sample preparation
- Based on empirical calibration
- Assume mono-sized and spherical shape of particles (Kozeny-Carman theory)
- Poor reproducibility
- Not good for calcined clays

Gas adsorption - SSA_{RET}

- Sample preparation required
- Gas access pores and cracks of the surface
- Does not assume particle shape
- Suitable for hydrated cements

Flatt & Marchon, CMS course (ETHZ)

www.matest.com

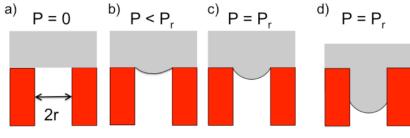
Porosity

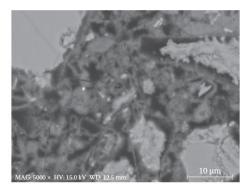
IUPAC* pores classification

- Macropores: d > 50 nm
 Mesopores: 2 nm < d < 50 nm
 Micropores: d < 2 nm
 Macropores: d < 2 nm
 - + Electron microscopy, ¹H NMR relaxometry

Category of pores in hydrated cement materials

- Compacting / air voids: μm mm, from imperfect placing
- Capillary pores: µm to a few nm, space not occupied by hydrates or unreacted cement grains
- Gel pores: nm, intrinsic porosity of C-S-H


^{*}International Union of Pure & Applied Chemistry


Porosity – MIP

- Pore diameter range of 2 nm 250 µm
- It is based on the intrusion of a nonwetting fluid (contact angle $\theta > 90^{\circ}$, Hg) into porous structures under increasing applied pressure (P). Hg can intrude only the interconnected porosity
- P is used to calculate the pore radius (r), assuming cylindrical pores, according to the Washburn eq.:

$$P = -\frac{2\gamma \cos\theta}{r}$$
 $\gamma = 0.485 \text{ N/m at } 25^{\circ}\text{C (Hg)}$ $\theta = 140^{\circ}$

Berodier et al, 2016

Physical characterization – Summary

ADVANTAGES

LD

- Quick (< 5 min)
- Widely available

Blaine air permeability

Quick and simple

SSA by gas adsorption

- Accurate
- Reproducible

CAUTIONS

LD

- Assume spherical particle shape
- Refractive index (care when the composition and purity vary)
- Use of proper dispersing liquid
- Avoid agglomeration

Blaine air permeability

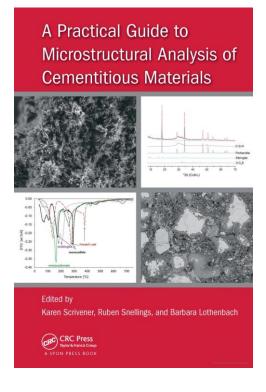
- Narrow domain
- Poor reproducibility
- Not good for SCMs (fly ash, calcined clays)
- Assume mono-sized and spherical particles

SSA by gas adsorption

 Sample preparation (degassing conditions, method to stop the hydration, gas selection)

General remarks

- All analytical techniques have an intrinsic error
- For most quantification methods, the relative error increases with the decrease in the absolute amounts
- Difficult to detect small quantities
- Calorimetry, XRD and SEM are the most important techniques for characterizing cement
- Best is to combine several techniques


Learning objectives

Now, at the end of this class, you are able to...

- Identify what characteristics of cement are important
- Select the correct analytical method(s) to measure a specific cement characteristic
- Recognize the limits of the available analytical methods

Recommended literature

Course schedule

Week #	Class date	Title	Lecturer
1	11/09/2024	Introduction and Literature Review	Prof. Karen Scrivener / Dr. Alastair Marsh
2	18/09/2024	Durability	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	Life cycle analysis for cementitious materials	Dr. Alastair Marsh
9	13/11/2024	Limestone calcined clay cements (LC3)	Dr. Franco Zunino
10	20/11/2024	Concrete design	Dr. Beatrice Malchiodi
11	27/11/2024	Sustainability appraoches for construction	Dr. Alastair Marsh
12	04/12/2024	Concrete structures / Q&A on Presentation 3	Prof. David Ruggiero
13	11/12/2024	Presentation 3	
14	18/12/2024	Re-use & standardization	Prof. David Fernandez / Prof. Corentin Fivet

Questions?

Advanced cementitious materials, MSE 420

Lecture 4: Cement characterisation and analytical methods

Dr. Federica Boscaro federica.boscaro@epfl.ch 2nd October 2024